J. DIFFERENTIAL GEOMETRY
5 (1971) 383-403

COMPLEX LAPLACIANS ON ALMOST-HERMITIAN
MANIFOLDS

CHUAN-CHIH HSIUNG & JOHN J. LEVKO III

Introduction

In [2] Hsiung (i) defined a new complex Laplacian [], for an almost-
Hermitian structure, which is different from the one, denoted by [J,, given by
Kodaira and Spencer [3], (ii) verified for [J, the well-known conjecture that if
[, = 4/2 for all 0- and 1-forms, where 4 is the real Laplacian, then the
structure is Kéhlerian, (iii) studied the conditions for J, to be real for all O-
and 1-forms. Very recently, Ogawa [5] continued Hsiung’s work to show that
if .either [J, or [, is real for all 0- and 1-forms, then the structure is Kdhlerian.

The purpose of this paper is to introduce three more complex Laplacians [,
., O, for an almost-Hermitian structure and to study the conditions for these
Laplacians to be real, together with some relationships among all [J’s. We
shall continue to use Hsiung’s method [2] which is somewhat different from
Ogawa’s, and also for completeness we shall reprove Ogawa’s result here.

§ 1 contains fundamental notation and real operators on a Riemannian
manifold. In §2 we define various almost-Hermitian structures first and then
some complex operators for an almost Hermitian structure leading to the com-
plex Laplacians [;,i = 1, - - -, 5. Some conditions for the tensor of an almost-
Hermitian structure to be Kihlerian are also given for use in the proofs of our
main theorems. § 3 is devoted to the computationof ;6 and Op,i=1, - -,
5, for any O-form & and 1-form % on an almost-Hermitian manifold. In § 4 we
show that for an almost-Hermitian structure if the complex Laplacian 1,
i=1,2 or 4 is real with respect to all 0- and 1-forms, then the structure is
K#hlerian. In § 5 we obtain the following relationships among the [J’s: If for
an almost-Hermitian structure the relation Im O, =Im O, (=2 or 4) or
Im O, =Im O3, (= 4or5) holds for all 0- and 1-forms, where Im denotes
the imaginary part, then the structure is Kéhlerian.

Throughout this paper, the dimension of a manifold M" is understood to be
n > 2, and all forms and structures are of class at least C*.

Commumnicated July 29, 1970. Research partially éupported by the National Science
Foundation grant GP-11965.
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1. Notation and real operators

Let M™ be a Riemannian manifold of dimension n(>2),|{g;; || with g;; = g
be the matrix of the positive definite metric of M*, and || g*/|| be the inverse
matrix of | g;;||. Throughout this paper all Latin indices take the values 1, - - -, n
unless stated otherwise. We shall follow the usual tensor convention that indices
can be raised and lowered by using g*/ and g,; respectively, and also that when a
Latin letter appears in any term as a subscript and superscript, it is understood
that this letter is summed over its range. Moreover, if we multiply, for example,
the components a,; of a tensor of type (0, 2) by the components b/* of a tensor
of type (2, 0), it will always be understood that j is to be summed.

Let 4" be the set {1, - - -, n} of positive integers less than or equal to #, and let
I(p) denote an ordered subset {i,, - - -, i,} of the set A" for p < n. If the elements
i, - - -, i, are in the natural order, that is, if i, < - .. <i,, then the ordered set
I(p) is denoted by I(p). Furthermore, denote the nondecreasingly ordered p-
tuple having the same elements as I(p) by <I(p)>, and let I(p;§|j) be the order-
ed set I(p) with the s-th element i, replaced by another element j of /", which
may or may not belong to I(p). We shall use these notations for indices through-
out this paper. When more than one set of indices is needed at one time, we
may use other capital letters such as J,K, L, - - . in addition to I.

At first we define

0, if (J(p)y # (K(p),
(L) e — 0, if J(p) or K(p) contains repeated integers,
' K® ™) +1 or —1, if the permutation taking J(p) into K(p) is
even or odd.

By counting the number of terms it is easy to verify that
I - s -
(1.2) 51.(.;.’?,2,(75 p)slj(p;bK(n_p) - p! Sé((”:b_zg) 3
I(PIT(L(p) — L(pyJ
(1.3) skGiderd = plexBisy -

On the manifold M™, let  denote the covariant derivation with respect to
the affine connection I", with components I'%; in local coordinates x', - - -, x™,
of the Riemannian metric g, and let ¢ be a differential form of degree p given
by

14 ¢= %?Sl(mdxl(p) = rymdx™®

where ¢, ., is a skew-symmetric tensor of type (0, p), and we have placed
(1.5) dx’® = dxt+ A\ ... A dxir,

Then we have
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(1.6) d¢ = (AP 1,psndxToP+Y |
where
1
(1.7) APz pey = Fe’z“(é’;’anS.nm .
Denote
(1.8) erny = &iy(det (g; )% .
Then by using orthonormal local coordinates x', - - -, x* and relation (1.2) we

can easily obtain
I(p)J(n— _ -
1.9 ermrm-pe PTPTP = plegGTh .

The dual operator = is defined by (see, for instance, [6])

(1.10) 2 G = (5 @)1 ympydXT"P
Where
(1.11) (x¢) = ——1-—e ¢’

. Itm-py — p! Jp I (n-p) .

From (1.10), (1.11) it follows that for the scalar 1
(1.12) * 1 = (det (g;)"dx* N\ --- Ndx",

which is just the element of area of the manifold M*. By using orthonormal
local coordinates x?, - - -, x® we can easily verify that

1.13) wk @ = (—1rn-ng |

Denote the inverse operator of % by x~!. Then from (1.13) it is seen that on
forms of degree p

(1.14) : w71 = (= 1)pmp)
The codifferential operafor d is defined by
1.15) 06 = (—=DP*"*1aldx g .
Making use of (1.6),(1.7),(1.10), (1.11) we obtain immediately

(1.16) 8¢ = (0)1,(p-pydX™ P,

where
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(1.17) (5¢)I(1)—1) = —"Vj¢j1(p_1) .
For a form ¢ of degree p defined by (1.4) we can obtain

. ?
p! (A¢)I(P) = _VJVI¢I(11) + s§ ¢I(1,;§,a,R“is
(1.18) i =
+ s§ ¢I(p;§|a,?|b)Rabisit s

where 4 is the Laplace-Beltrami operator defined by

(1.19 4 =2dd + dj ,

and

(1.20) Vi=g*r,,

(1.21) R = oI, Joxt — oI, fox* + Iy I — ' I 5 s
(1.22) Ry, = Ry, - :

2. Complex structures and operators

On a Riemannian manifold M" with metric tensor g,,, if there exists a tensor
F;? of type (1,1) satisfying

@2.1) FJFjF = —¢,

then F;/ is said to define an almost-complex structure on the manifold M*, and
the manifold M" is called an almost-complex manifold. From (2.1) it follows
that the almost-complex structure F,7 induces an automorphism J of the tangent
space of the manifold M” at each point with J* = —I,I being the identity op-
erator, such that, for any tangent vector v*,

2.2) J: vf > Fjlpt,
If an almost-complex structure F,/ further satisfies
(2.3) giijiij = Znk »

then F is said to define an almost-Hermitian structure on the manifold M*,
and the manifold M" is called an almost-Hermitian manifold. From (2.1), (2.3)
it follows that the tensor F, of type (0,2) defined by

2.4 F?‘,j = gijzk

is skew-symmetric. Thus on an almost-Hermitian manifold we have the associ-
ated differential form
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(2.5) w = F,-jdxi /\ dxj .

By using the multiplication of matrices, from (2.1) we readily see that a neces-
sary condition for the existence of an almost-complex structure on a Riemannian
manifold M™" is that the dimension » of the manifold M" be even. It should also
be remarked that an almost-complex manifold is always orientable, and the
orientation depends only on the tensor F,7.

An almost-Hermitian structure F,’ defined on a manifold M™ is called an
almost-K&hlerian structure and the manifold M" an almost-K#hlerian manifold,
if the associated form w is closed, that is,

(2.6) de =0.
From (2.5), (2.6) it follows that an almost-K#hlerian structure F,’ satisfies
(2.7) Fh.ijEVhFij+Vith+Viji:0'

The tensor F;, is obviously skew-symmetric in all indices.
.An almost-Hermitian structure F,? (respectively manifold) satisfying

is called an almost-semi-Kihlerian structure (respectively manifold). In partic-
ular, the structure F,/ is Kéhlerian if //,F,* = 0. In this case, by means of (2.1)
it is easily seen that the torsion tensor

t;* = FM@F*|ox" — 9F,*[ox) — F*@F*|ax" — F,*|dx7)

vanishes, so that the integrability condition of the almost-complex structure F,’
is satisfied. But in general when #,;* = 0, the almost-Hermitian structure F,7 is
defined to be Hermitian

Multiplying (2.4) by F** we obtain

2.9 Fy Fhi = ¢t |

By taking covariant differentiation of both sides of (2.9), noticing that
(2.10 F9/.Fy; =0,

and making use of (2.7), (2.8) it is easily seen that

2.11) FFY = 2F,'F; .

Thus an almost-semi-K#hlerian structure F,’ satisfies

(2.12) FhijFij - 0 .
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Multiplication of (2.11) by F;* and use of (2.9) give
(2.13) Fk = —'%Fh,”Fiijh B

From (2.7), (2.8), (2.13) we hence conclude that arn almost-Kéihlerian structure
or manifold is also almost-semi-Kdhlerian.

In the proofs of our theorems we shall need the following lemmas.

Lemma 2.1. An almost-Hermitian structure F satisfying

(2.14) Vszk = VJFHC

is Kdhlerian.
Proof. From the skew-symmetry of F,; we have

(2'15) Viij"}’Vlej:O.

Taking the sum of (2.15) and the two similar equations obtained from it by
cyclic permutation of the indices i,j, kX, and making use of (2.14) we obtain
ViF s + ViFes + V,Fiy = 0, which together with (2.15) implies immediately
V,Fy, = 0.

Lemma 2.2. An almost-Hermitian structure F satisfying

2.16) | Fp*p,Fyy = O

is Kéhlerian.
Proof. From (2.9) we have

0 = V7 ((Fy,Fi9) = 2(FHPH Fyy + VoF, FEFY)

which together with (2.16) gives V,F;;F/*Fi/ = 0 and therefore V' ,F,; = 0.
Lemma 2.3 (S. Koté [4]). An almost-Hermitian structure F satisfying

@.17) PFF+ VP FE=0,
2.18) Ryi = —3RpjuF9F/

is Kdhlerian.
Proof. (2.17) can be written as

(2.19) Vtij = Vkth .

Multiplying (2.19) by F*/, usiﬁg (2.10) and taking the covariant derivative V,
of the resulting equation, we obtain, in consequence of (2.19),

(2‘20) FijVLV,;Fj* + VkFijVLFU = 0 .
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On the other hand, using (2.19) and the relation — F*f 7 .F,, = Fi/F .V ;F,,
from the Ricci identity it follows respectively that

(2.21) VW = V;VijL + RojuFx®* — RowalF )%,
(2.22) Fi W Fyy = —3F9(R%;Fq; + R%yiFa) .
Similarly, the Bianchi identity leads to

2haij” = RMijij - RnﬁkFU
= (Rpyix + RpupFY — 2Ry FY

and therefore to

(2.23) Ry F9 = — LRy FY .

Substituting (2.21) in (2.20) and using (2.22), (2.23), (2.1) we can obtain
(2.24) ViFV . F¥ = Ry, + F(Ryp45F,® — RauisF®) .

Interchanging k,! in (2.24) and subtracting the resulting equation from (2.24)
we have

(2.25) RoyisFi®FY = Ry ;F oFY
and therefore (2.24) is reduced to

(2.26) V. FiV . F! = Ry; — YR gy, Fr°FY
which together with (2.18) implies

2.27) Vi FV, F4=0.

Multiplying (2.27) by g** we hence obtain I/, F;; = 0.
Lemma 2.4. For an almost-Hermitian structure F, condition

(2.28) F}R;, = Fkleijl

implies condition (2.18).
Proof. Since

FHRij = E'FM(RICJM - lehk)
= $F*(Rysn + Runiy) = 3F* Ry
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by the Bianchi identity, from (2.28) we obtain

(2-29) ijth = %thlekL .

Multiplying (2.29) by F,’ and using (2.1) lead immediately to (2.18).

We now consider an almost-Hermitian manifold M~ with an almost-Hermitian
structure F, and shall follow Spencer (compare [7, Chapter IX]) to introduce
complex operators on the manifold M*. At first we define

(2.30) M = #e — vV—1F;)

1,0

and its conjugate' tensor

(2.31) Md=T1¢ =¥/ + vV—1F) .

0,1

A simple calculation gives the following identities:

NS4 =1&,
1,0 1,0

1,0

@32 AT +=0,

Letp+o=p,p>0,06>0, set

) — M{p)N
i’ =@ w0 11 m, f
(2.33) L34 1,0 1,0
] .. 8o o (D)
° n ny n ny  ERo(mSola)
0,1 0,1

and define [] ;,,,7?’ to be the identity for p = ¢ = 0 and to be zero for either

pyo
p <0or ¢ <O. Then for a form ¢ given by (1.4) we have

(2.34) [T ¢ = (] Prypmdx™® ,
(N4 1234

where

(2.35) (,,”., iy = Hum“‘p’mm .

We next define a complex covariant differentiator

1 Throughout this paper a bar over a letter or symbol denotes the conjugate of the
complex number or operator defined by the letter or symbol.
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(2.36) D; = H Vs
and the corresponding contravariant differentiator
(2.37 P = gi*g, = 0n1 SV = H £

The conjugate operators of 9, and 2* are

(2.38) 2= 117y,
0,1

(2.39) =[], .
1,0

Now we define the complex analogues of the real operators d and § defined by
(1.7), (1.15) respectively:

(2.40) d; = [1 41,
pto=p p+lc (434
(2.41) d, = m 47,
pto=p p+2,a-1 p,a
(2.42) 0, = [ a1l,
pto=p p,0-1 (254
(2.43) = % P
pto=p p+1l,6-2 0,0

The conjugate operators of d,, d, and §,, 3, have the forms:

(2.44) d= % 1 dIl,
B pto=p p,o+l (2%

(2.45) d= % I 41,
pto=p p~1,0+2 p,0

(2.46) o= 2 [1 &I,
pto=p p-1,0 234

(2.47) 5,= % ] o1]-

pta=p p-2,0+1 214

Furthermore, for a p-form ¢ given by (1.4) we define

(2-48) (a1¢)1(p+1) = (Zdz + d1 - Jz)l(p+1) ’
(249) (’91¢)I(p—1) = (252 + 51 - Bz)l(p-l) s
(2-50) (az¢)1(p+1) = Z 1—1[ I(p+1)jJ°(p)9.1¢Ju(p) s
pte=p p+le
(251) (192¢)I(p—1) = - Z n iI(p—l)JO(p)9i¢Jo(p) >
pto=p p,o

together with their conjugate operators:
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2.52) @Brpen = Qs + &y — D1y
(2.53) P = 26, + 6, — Hi1p-ny >
(254) (52¢)I(p+1) = Zp Hll(pﬂ)jlh(p)‘:}jqucfo(p) b
pte=p p,0+
(2'55) (9_235)1(;0_1) = — Zp H tI(p—l)Jo(p)éiSéJn(p) .
pto=D p,o

It is known that (see [3], [5]D
(2.56) Q= — %3, %, 9, = — %3, %,
and that (see [3]) if the structure F of the manifold M* is Kdhlerian, then

d,$ = d,¢ = 0 for any form ¢, and therefore 3, = d,.
Now we introduce the following complex Laplace-Beltrami operators:

(2.57) O, =98+ 39, (=12,
(2.58) O, = 9.8, + 3,9, , ‘
(5.59) O, = 99, + 89, »

(2.60) O, = 8,d, + d;3, .

It should be noted that [, was first defined by Kodaira-Spencer [3], and (71,
by Hsiung [2].

From [3] we know that d = 3, + 3,. In order to apply 8, + 3., let £ be any
O-form. The we have, in consequence of (2.50), (2.36), (2.32), (2.30),

(2.61) 0£), = IHDZ-HVJE =3Vt — V—1F, V5,
which together with (1.6), (1.7) gives ‘
(2.62) dé = (0, + )¢ .

Similarly, for any 1-form z, using (2.50), (2.36), (2.33),(2.34), (2.35),(2.32)
we can obtain

@iy = 10 1" — Vind + (1T &7 11" — & 11 W W 04
1,0 1,0 i,0 0,1 1,0 0,1

(2.63) —
= %[V’iln‘ia - V‘iznil + J_l(FinVjvil - Fi1ij77i2)] ’

which together with (1.6), (1.7) gives

(2.64) dy = 3@, + 9 -
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The almost-complex structure F of the manifold M™ is said [3] to be
(completely) integrable if and only if 62 = 0. Now by means of (2.61), (2.50),
(2.30), .- +,(2.36) and the relation

(2.65) VyEg=rye
for any O-form £, an elementary but lengthy calculation gives

4038 i,0, = (Fi,V F 0 — F 9V F,5W &

(2.66) -
+ N/'—l(Vithlk — Vi F MWt .

If 83 is real for any O-form &, then by taking & = x? for any arbitary { with
respect to any local coordinates x', - - -, x*, from (2.66) we obtain (2.14), and
therefore by Lemma 2.1 the structure F is Kihlerian.

3. Expressions for []’s

In this section we shall give expressions for [J,£ and [, wherei=1, ...,4,
and £ and 7 are respectively any 0- and 1-forms on an almost-Hermitian mani-
fold M with an almost-Hermitian structure F.

3.1. Laplacian [],. In [2,pp. 146-147] we obtained

3.1) 4018 = 248 + PPF(—F .8 + v =17,8)
4([:]277)“ = —FijViFithhvj —_ thViFithﬂil + F,;liViththj
- 27171’711 + [Vj, Vil]ﬂj + Fith”[Vm Vz‘]’?j

(3.2) -
+ \/—1{7in1717711 — (W F x4+ Vi FioWey
+ 2ijVij77i1 —_ Filk[Vj, Vk]ﬂj —_ ij[VlH Vf,_l]??]} N
where
(3.3) Wwrl=0ry,—vy,.

3.2. Laplacian [J,. At first we notice that as a result of (2.65) we have
3.9 - Frr,E=0.

By using (2.57), (2.53), (2.45),- , (2.48),‘(2.33),((2.40),(2.41),(2.43),(2.1),
(2.30),(2.32),(2.34),(2.35),(3.4),(1.17),(1.18) we can obtain

(3.5 200, =25 [ dé = 48 + V—1P'F IV ;€ .
1,0
In order to compute 1,7, from (2.48), (2.52),(2.40), (2.41), (2.43), (2.45),
(2.46), (2.47) we first see that

3.6) 8, =2[dT + N4+ 14l -T114[, for l-forms,
2,0 0,1

N N 2,0 1,0 1,1 0,1 0,2 1,0
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BN H=2Tl6[1+TI6M+M6M—T18[], for2-forms.
0,1 2,0 1,0 2,0 0,1 1,1 1,0 0,2

Next, by means of (1.6),(1.7),(2.33), (2.34),(2.35), (1.2),(1.3),(2.30),(2.31),
we obtain

Mallp=Ul.*Tla'Te [T =V 1D + [1a* 11 &Vens
0,1 1,8 0,1 1,0

1,1 1,0 0,1 0,1
~ a1 &V + 115 [T &' [T — Vi [ Dnsldxte®
1,0 0,1 1,0 0,1 0,1 0,1
(3.8 = Vi, — Vi, + Fi 5 FWan; — Vine)

+ V=1V Fi) — Vi, Fi? + F *F )V FJ — V\F.)
+ F,/Pony + Vi) — Fo /Wiy + Vi) Nidx?o®

d 77:[nilknizl(an’Lj—Vzlnokj)ﬂj

2,0 1,0 1,0 i,0
+ 1o T1 50 e — Vin)ldxlo®
1,0 1,0
3.9) = ${pF W Fl — ViF) + F W Fy! — V Fy)]

+ 27i177i2 - 272'2772'1 + 2F'i1jFiak(Vk77/ - Vjvk)
+ «/:T[U/(ViZFi,j -V, F,7 + F *F, V. FJ — V.F.7)
+2F W05 — Vi) + 2F W s, — Vo )ljdx’e®

50 d = ﬂ] u 11:! oWk (];[1 . 01‘[1 D)y dxto®
(3.10) = Y [F* W F ) — Vo) + F W Fy — Vi Fi)]
+ VAW Fy — ViFy!
+ F *F 'V, F) — U F)ldxle®
~ AT = [T [ [~ 7 ] et
e = P O oF — VuF) + F*0uF ! — 7 Fid)]
+ Vg W Fof — Vo F.?
+ F*Fi /W — ViF )dx™®

4(}—(1) do Ilu 7])7,1 = ﬂjFillVleij + FilleijVlvj
(3.12) + FiILVleijvj — Vilevk + FflllejVLVkvf

+ =1V o ¥ F? + VEF IV oy + Vo FiV ey,
+ FV Ven; + FoWl*g)
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Substitution of (3.8), - - -, (3.11) in (3.6) thus gives

(3.13) o = Vi, — Ve, + \/—_)i[nj(VilFizj VL F.)
+ F, 70 s, — Fi 27, jdxTe®

Now put

Ay, =Von, + \/——l(ﬁjVilFizj + F.,Vm)
(3.14) Bl = elelr — eftelr + Fy M F» — FMF, Fr

Clift = elF M — epFy ) — efF & + e0F, 0
Then
(3.15) 8y = MAu,, — Ayy)dxlo®

By means of (3.13),(2.33),(2.34),(2.35),(2.30), (2.31),(1.16),(1.17), ele-
mentary but rather lengthy calculations give

0,1 1,1
= 2 n Vs[eglaff - 5’3552 + Fsleixh - Filleskz)AklkZ]
0,1

= 9, FF W Fi i — Vi Fyl) + F"FF, N ,F, — 7,F7
+ F, WV, FJ — PV F7) + FEPTVF,7 — 7V, F9]
+ QF,W°F}* — FWWF, X)Wy, + F;/Vop,(7,FJ — 27 F,9)
(3.16) — FM0, F 7oy, — Fy7VF 0 gy + 207 .,
+ 2F, FF V0 + v —1{p,[FVF 7 F? — VF7)
+ F P FMP F — VFd) + V7 F, 7 — PV FJ
+ F *FMPV,F — PV FD) + QU F, 7 — V. FHVy,
— 2VSF IV, + VoF, 0 iy, — F,*F MV FVoy; + VSF,F 3,
+ 2F, 7V g, — 2F 70 1.}

1,0 2,0
= [1 PUBE: + V= 1CH) Ax,]
1,0
= nj[%VsFilk(Vstj — Vszj) + %FilrFskVSF'rl(Vlej - VkFl’j)

+ VSFEWF ) — Vo F) + FfV Fy — VWV FA)
+ Fsk(VstFilj - VsVilej)] + 2Fi1szFsl(Vk771 - Vﬂ?k)
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+ F, VoW, FJ + V.FJ9) + FMF, MV g — 2V m)
— PV FVon, + 200 g5 — 200 o

(3.17) 4 2F *F TV in, — V¥V i)
VA [L1F VF P F — VFy) + F N Fy
— VF) + FEIELTFS — ViF ) + V0 F,
PV FJ + FAFATTFS — V7 FN] + VF IV,
— P FIV, + FMFWF oy, — Fiu7FWF, %,
4 WFIW oy — Vi) — 2FFF W F iV,
4 2FH PV, 0 — VW ops) + 2F 20 i — VW )}

—8(10—‘[1 0 H al’))il_
= [V F,}WF\ — Vi F) + &F,"FMF W F? — V. F))]
+ FMVSF )W oge — Vip) + Fi VEF W g — Vi)
+ V= [F P F, (7 F — ViFL)
+ §F,VF W . F) — V.F)]
+ F, F}VF, Vg — Vi) + VoF W, — Vinplt s

(3.18)

—16([] 3 [T 8, = 2 [] PAIBRE: — ¥/ = 1CH) Ause]
7 =I n,[VsFil"(Vkl’st — V. F,9) + Fil"Fs"VsFTl(VLF,,f — V. .FN]
(.19) 4 VI, [F 7 F T F — VF,)
+ F,VF G F — V. F] .
Sugstituting (3.6),(3.7),(3.12),(3.16), - - -,(3.19) in (2.57) and using (2.32)
an

(3.20) 2ijVij7hl = ij[V], Vk]’)ﬁ s
we can obtain, after some elementary simplification,
MOy =4QTTO[T+ 1T+ 11611 — 16 [Dam + [1ds [1 7l
0,1 2,0 1,0 2,0 0,1 1,1 LO 0,2 1,0 1,0
= W F*WV,F) — ViFy)) + VF*W.FJ — V F.7)
+ FAPVF — VV,F.)) + F W]

+ Fssznj(Vilej - 2VkFtlj) + FsszFill(anL - Vﬂ)k)

(3.21) + FillVLijanj + F.,;ILVjFlkanj - 273737]1;1

+ Wi, ViIn® + FoF*0,, Vi,
+ V=17V, FS —VVF, S+ V,FFS) + 20FV
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—_ Z(VsFilj + Vilst)Vjﬂs + st[Vs, Vj]vil
- st[Vs, 711]7]1 — Filj[Vs, VJ]7]S} .
3.3. Laplacian ;. Inthe same way as above we can compute J,£ and

O, i = 3,4,5, but we shall omit the details in this section and §§ 3.4, 3.5.
We find that

(3.22) 0.4 = 04,

(3.23) 29 = Vi + ¥ —1L(F Wy, + 97/*F,7) ,
40,9);, = 7,F W V*F,7 + F, W, Wy, + F, WeF 7 i,

(3.24) — Vg + F RSV e, +  —1lpV V*F,

+ Vi Fi'Viy + VEFV oy + FV o Ve + FL OV Ve
293 = 2AQ 18T + [T [T + [T [T — I18 IDals,
= FVF. W g — Vi) + Fo(P°F 9 g, — VIV )
(3.25) — WV s + VoVigs — F )F WV,
+ v —1WF W n; — 2V + VFJIQV s, — Vi)
— F, V0 s + FIQVV 95, — VSV i1,

4(D37])¢1 = ﬂjFilleVkaj + 2FIVSF *(V o — Viny)
+ F;, W, FVey; — V¥*F 'V ) + 2F;VSF,9V s -
— AV s, + 20V s — ViV *ns
+ F.'F (W ey, — 200 13
+ V=1V J*F, + VFJIAY 5, — Vi)
+ 2P3F, iV py — 2V 35)
+ V. FVry; + 2F QU 5, — V7 100
4 F T Vo — 204 ) + Fio'V V%] .

(3.26)

3.4. Laplacian ],. For Df, .y we obtain the following equations:

(3.27 20,8, = Vg — V—1F, V£,
(3.28) O£ = 0.4,
(3.29) 29 = —Vky, + V—1F V%, ,

4(811§z7i)z1 = FillVLijVkﬂj — Vileﬂk + FilleleVkﬂj

3.30 — A .
( ) + V=1 FiV*; + FulV oy + F 3V Ve,
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(3.31)

(3.32)

3.5.

(3.33)
(3.34)
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— 4320, = 9 Fit TV Fy) — V0 F9) + (V.F) — Vo FOF Wy,
+ FJIW'F, *Vin; — VIF 0 i) + 200 g, — VOV 194
+ FJF, "Wy + ¥ — 1V ;F* — VP F )y,
+ (VkFilj - Vilej)Vkﬂj + VjFilkVWj - Vijk‘VWil
+ F. V¥ . — 2F V9V s, + F/VV 341 5
— 4Oy, = pFLFT ! — PV F9) + O F, — Vi FOFT ey,
- 4+ FI(P'F, "y, — VF*V ) — F W F V%,
+ Wi Vyly? + 200 4, + FUF VW 4y
— F,\FV ey,
+ VST F L — PV F
+ (VkFilj - 2Vi1ij)Vkﬂj
+ VIF ¥V yn; — VIF*Vyn, + FHV V],
+ ij[Vj, Vk]ﬂil + Filj[ka Vj]ﬂk} .

Laplacian [1,. Finally, for the remaining Laplacian [, we first have

L"_Isf = 0.4,
Sy = —p" ﬂ,ij - H IV

Adding (3.8) to (3.9) gives

S(dl”)iliz = 4‘7111”1:2 - 47732”‘51 + ”J[Fhk(Vistj - VkF‘lzJ)
+ F*VoF — Vi Fih]

(3.35) + & —=1{,[3F ,*F )P [F,} — V,F)
+ VilFigj bt VigFilj] + 4F¢szkv¢1
- 4F731k‘7k7]42} .
Now put
a6 20 = Wt + HESTFD + FTE)
' + ¥ —1GF o F W Fy! + 0 o Fi? + 4F 3V )
Then
(3.37) 8di = (Gii, — G )dx™® .

As in the derivation of (3.16), (3.17) we can obtain

(3.38)

—2(1] 6 [ dm)s, = [1 V‘“[(ef‘eff — eftel + Fsk‘Filkz — Filleskz)G’llig] s
61 11 o1 _
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(3.39) —4(T 0 [T dp, = [T PUBEE + V—=1CE)Gy,)

where B¥#%: and C¥}* are defined in (3.14). After some calculations we can
thus have

16(0,m);, = 16[(11]) ) ﬂ) + ﬂ 51E[)dln + Ho dogl,,
=P F, W F — V. FJ) + F,"F}F, V ,F,’
—V,FJ) + AF }*VV Ff — PV FJ + V. FF7))
+ 8F, "V F\ Wy, — 8V .n;, + 4V, V 00k
+ 4F'FHW0 LV Yy + & — 1, [4F }7F WP F
— V,F) + F,/VF,x(F FJ — VF,7)
+ 3F*VsF, WP ,F,J — V,F) 4 4V V*F,’
+ AF, *F VW F,i — F,F )] + 8VSF 0,
+ 4F;'F*W ,F} + V. FO i, — 4@ F* 4 V,F OV 7
+ AFSW, Vp, + AF MV, Vgt + AR, 7y .

(3.40)

4. Realization of ’s

Theorem 4.1. The complex Laplacian [, i= 1, --.,5, for an almosi-
Hermitian structure is real with respect to every O-form if and only if the struc-
ture is almost-semi-Kihlerian. Moreover, with respect to every O-form, if O,
i=1,-..,5, for an almost-Hermitian siructure is real, then [, = 4/2 for
i=1,...,5.

Proof. The theorem follows immediately from (3.1), (3.5), (3.22), (3.28),
(3.33) and (2.8) by choosing the 0-form & to be x* for an arbitary & with re-
spect to any local coordinates x', - - -, x™.

Theorem 4.2. For an almost-Hermitian structure, if the Laplacian 1,
i = 1,2 or 4, is real with respect to all 0- and 1-forms, then the structure is
Kiihlerian.

Kodaira and Spencer [3] have shown that if the relation

4.1) 0, = 4/2

holds for an almost-Hermitian structure, then the structure is integrable. The
particular case of Theorem 4.2 in which

4.2) O.=4/2 (G=1,20r4)

holds was a conjecture for some time; it was proved by Hsiung [2] for i = 2
and by A. W. Adler [1] for { = 1 by a different method under a stronger as-
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sumption that (4.1) holds for a Hermitian structure and all 0-, 1~ and 2-forms.
Theorem 4.2 was proved by Hsiung [2] and Ogawa [5] for i = 2, and by
Ogawa [5] for i = 1 by a somewhat different method.

Proof. (i) i=2.In[2,p. 148] Hsiung proved that under the assumption
of the theorem the structure F satisfies? (2.17) and (2.28). Then the theorem
follows immediately from Lemmas 2.4 and 2.3; this was pointed out to one of
the authors by H. Wakakuwa.

(i) i=1. Using the Ricci and Bianchi identities and (2.23) we can easily
obtain

(4.3) Filk[Vj’ Vk]ﬂj = FilkRkjﬂj ’
(4.4) FOW,, Vi — F*V 5, Valns, = —3F*'R7 g am; »
(4.5) VW Fei — V7, FFi = F iR, — }FeRI,, .

By assumption, for any 1-form », Im [J,7 = O which is reduced to, in conse-
quence of Theorem 4.1, (2.8), (3.21), (4.3), (4.4), (4.5),

4.6) 200, F,7 + V., FW o + WV F;7 + F*R) — R, *F,)p; = 0.

By choosing

“.7) = dx*, for an arbitary &

with respect to any local coordinates x', - - -, x*, from (4.6) it thus follows that
4.8) Vv F,» + F.*R,* — R, *F,» =0

Multiplying (4.8) by F,* and using (2.1) we obtain (2.16), and therefore the
structure F is Kéhlerian by Lemma 2.2.

(iii) i=4. At a general point P of the manifold M™ we choose orthogonal
geodesic local coordinates x!, - - -, x® so that

(4'9) gz](P) = 5ij s Ffj(P) =0 s

where §;; are Kronecker deltas. By using Theorem 4.1, and choosing 7 to saﬁsfy
(4.7) first and then

(4.10) y = xtdx' for any fixed distinct 4 and !

with respect to the geodesic local coordinates x?, - - -, x*, from (3.32) the con-
dition Im ([1,7) = 0O for any 1-form 7 is reduced to '

(4.11) PV Fyt — Vi, F* =0,

? By mistake, (2.28) was printed as F;:Rij; = F;iR";; in [2, p. 14810
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4.12) V*F,, + 2V, F* + P F;» =0.

Interchanging [, i, in (4.12) and adding the resulting equation to (4.12) we ob-
tain

4.13) V,F* + V,F,*»=0.
From (4.11), (4.13) it thus follows that
4.14) Viv,F.»=0,

and hence by Lemma 2.2 the structure is Kdhlerian.

5. Relationships among [1’s

Theorem 5.1. If for an almost-Hermitian structure the relation
(5.1 Im O, =Im O, (i=2o0r4)

holds for all O- and 1-forms, then the structure is Kéhlerian,
“Proof. (i) i=2. From (3.5),(3.1) and condition (5.1) for any O-form
&, we have

(5.2) VhthVjE = 0 .

By choosing & = x? for an arbitary i with respect to any local coordinates x?,
-+, x™, from (5.2) follows immediately (2.8), which together with (3.2), (3.21),
(3.20) reduces condition (5.1) for any 1-form 5 to

5.3 WFJ) +V,FWyp — WV FS—-VVFm=0.

Choosing 7 to satisfy (4.7) first and then (4.10) with respect to the local co-
ordinates x', - - ., x" defined by (4.9) we therefore obtain (4.11), (4.13), and
hence the structure is Kdhlerian for the same reasoning given in the proof (iii)
of Theorem 4.2.

(i) i=4. Asinpart(i), from (3.5), (3.28), (3.1) and condition (5.1) for
any O-form &, we obtain (2.8), which together with (3.21), (3.32) reduces con-
dition (5.1) for any 1-form pto -

(5.4) (V,Fk — V*F )Wy =0 .

By choosing 7 to satisfy (4.10) with respect to the local coordinates x?, - - -, x»
defined by (4.9), we have

(5.5) ' VI.FIM; - VhFL'h = 0 .

Thus by Lemma 2.1 the structure is Kdhlerian.
Theorem 5.2. If for an almost-Hermitian structure either the relation
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(5.6) ImO,=Im O, .
or
5.7 Re O, = Re 1,

holds for all 1-forms, where Re denotes the real part, then the structure is
Kihlerian.

Proof. From (3.1), (3.32), by the same argument as in the proof of Theo-
rem 5.1 for i = 4 it is easily seen that conditions (5.6), (5.7) imply
(5.8 V,F'!=V,F,'=0,
(5.9) thVilel - thVjFill == O E )
respectively. By multiplying (5.9) by F,.*, we can reduce (5.9) to (5.8). Hence

by Lemma 2.1, the structure is Kihlerian under either (5.6) or (5.7).
Theorem 5.3. If for an almost-Hermitian structure the relation

5.10 Im O, =Im Oy

holds for all O- and 1-forms, then the structure is Kihlerian.

Proof. From (3.33), (3.5), (3.1) and condition (5.10) for any O-form & we
obtain (2.8). Then by the same argument as in the proof of Therem 5.1 for
i=2,(2.8),(3.2),(3.40) reduce condition (5.10) for any 1-form 7 to

F, V' F W F* — P F*) + 3FVF \V Fy* — ViF,")
+ 4F,})FW(WV FF — VPV F") =0,
(5.12) F,/F¢@Z Fr*+VF")=0.

(5.11)

Multiplying (5.12) by F,»F;* and use of (2.1) give

(5.13) V,F* + Vi F/*=0.

Substituting (5.13) in (5.11) we can easily obtain

(5.14) 2F YFWV F* — F*PF, W . F*»=0.

Multiplying (5.14) by F,* and using (2.1), (2.8), (5.13) we therefore have
(5.15) V. F, V' Fa =0,

which implies that V' ,F,, = 0. Hence the structure is Kihlerian. q.e.d.

Finally, it should be remarked that there are no theorems involving the
Laplacian [1, similar to Theorems 4.2, 5.1, 5.2, 5.3. However, we have the
following two theorems, the proofs of which are omitted.
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Theorem 5.4. If for an almost-Hermitian structure the relation

(5.16) Im O, = Im 0O, + 1 Im (9,3,

holds for all 1-forms, then the structure is Kihlerian.
Theorem 5.5. If for an almost-semi-Kihlerian structure the relation

(5.17) ImO,=Im0; + $Im($3) (=2or4)

holds for all 1-forms, then the structure is Kiihlerian.
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